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Solution of the Ornstein-Zernike Equation for a Soft- 
Core Yukawa Fluid. III. A Restricted Model for 
Electrolytes and Fused Salts 
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A model for dense electrolytes and fused salts is proposed which incorporates 
both the known long-range asymptotic form for the direct correlation function 
and a parametric form for the total correlation function appropriate to a 
soft-core interaction potential. A special case extending the MSA for the 
restricted primitive model for electrolytes is discussed in some detail. 
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1. I N T R O D U C T I O N  

The  restr ic ted pr imi t ive  mode l  ( R P M )  for e lectrolyte  solut ions and  mol ten  
salts consists of equal  numbers  of oppos i te ly  charged  ha rd  spheres of 
d iamete r  R immersed  in a homogeneous  m e d i u m  of dielectr ic  cons tan t  c, 
the two species being present  a t  n u m b e r  densi ty  0 /2 .  The  in terac t ion  
be tween two par t ic les  is given by  

oe, x < l  
~ i j ( r ) / k T =  ( -  1)i+JBIx, x > 1 (1) 

where  x = r / R  (r is the in terpar t ic le  separa t ion)  and  B = q2/eRkT, where 
_+ q is the charge,  k is Bo l t zmann ' s  constant ,  a n d  T is the abso lu te  
tempera ture .  
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If we introduce the reduced density ~/, given by 

~1 = qroR 3/6 (2) 

then typical values of B and ~/ for a 2 M 1-1 electrolyte are B ~ 2 and 
~ 0.1. In the case of fused salts, for which E = 1, typically B ~ 50 and 
~ 0.4 (i.e., the high-B, high-7/domain) (see, for example, Ref. 1). 

Studies of the RPM via machine simulation, (1-4~ numerical solution of 
the hypernetted chain (HNC) and Percus-Yevick (PY) approximations, (5-7) 
and analytic solution of the mean spherical approximation (MSA) (8-1~ 
have indicated that the HNC is the most accurate integral equation 
approximation for the RPM. However, more recent developments, such as 
the exponential (EXP) approximation (11~ and the generalized mean spheri- 
cal approximation (GMSA), (12-14) have been used successfully in improv- 
ing the MSA results. 

Further, the GMSA provides a fully analytic theory for both structural 
and thermodynamic properties whose accuracy is comparable to that of the 
HNC.(14) 

Hence we see that the RPM is now able to be described with 
satisfactory accuracy via an integral equation approach, particularly in the 
electrolyte regime. However, the RPM itself can only be regarded as a 
qualitatively correct model for fused salts. O) The major deficiency in the 
model is the presence of the hard core, which requires that the total 
correlation functions hij(x) satisfy the exact hard-core condition 

ho(x ) = - 1, x < 1 ( 3 )  

A more careful treatment of the soft-core part of the interaction 
potential can have significant consequences even in the electrolyte re- 
gime. (1~) Hence it would be of interest to consider a nonprimitive model 
for electrolytes for which the hard-core condition [Eq. (3)] is relaxed. 

One method by which the hard-core condition may be relaxed is 
through the use of a perturbation theory, such as the Weeks-Chandler-  
Andersen optimized cluster theory. (16) However, this approach appears to 
be unsatisfactory in the fused salt regime (see Ref. 16, Sec. IV.H). 

In this paper we adopt a more direct approach first introduced in Ref. 
17 [hereafter referred to as I; equations from I are referred to as (I.1), etc.]. 
We relax the hard-core condition [Eq. (3)] by assuming that ho.(x ), on the 
domain 0 < x < 1, takes the form 

hij(x) = - 1 + ~ cosh?t~ ?tkx , 0 < x < 1 (4) 
k = l  

where o~ and X k are parameters yet to be determined. To specify the direct 
correlation functions [c,j(r)] we adopt an approach suggested by the success 
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of the GMSA (t2-14) by writing 

N+ 1 glJe z t (x-  1) 
cij(x) = Z , x > 1 (5) 

l=1 X 

where K/~ + l = ( _  1)i+j+ 1B, and the parameters K/J, z t (l = 1 . . . . .  N) are 
as yet undetermined. We ensure that cO(x ) has the correct asymptotic 
behavior at large x by taking the limit ZN+j~ O. Equations (4) and (5) may 
be regarded as the closures to the Ornstein-Zernike (OZ) equation (~s~ for 
mixtures, viz. 

h~j(r) = co.(r ) + ~pgh~k*Ckj(r) (6) 
k 

where �9 indicates a convolution integral over all space. 
In Section 2 we solve Eq. (6) for the closures given in Eqs. (4) and (5), 

which we call the soft-core restricted model (SCRM) for electrolytes and 
fused salts. In Section 3 we discuss a special case of our analysis. 

2. METHOD OF SOLUTION 

From symmetry considerations, we note that in Eq. (6) we have two 
distinct equations: 

hl~(x ) = Cll(X ) + (3/~r)'q(h11*Cll + h,2*c,2)(x ) (7a) 

hlz(x ) = Cl2(X ) + (3/~r)~(hl,*e12 + hl2*c,,)(x ) (7b) 

for the four distinct functions hl~ (=  h22 ), h12 (=  h21 ), c1~ (=  c22), and c12 
( - c2 , ) .  Note that symmetry conditions also require that a~2--a2~, ~ 
=a~2 in Eq. (4) and that K(2 K t K( ,=K~2 in Eq. (5). It is more ~ 21, 
convenient to redefine our problem in terms of the sum (hs(x),G(x)) and 
difference (hd(x), cd(x)) correlation functions given by 

h s ( x  ) ~- l [ h l l ( X  ) 4- hl2(X)] , Cs(X ) = l [ C l l ( X  ) 4- c12(x) ] (8) 

ha(x ) = �89 [ht , (x)  - h,2(x)], ca(x ) = �89 [Cll(X ) - c,2(x)] (9) 

Using Eqs. (4), (5), and (7)-(9), solution of the SCRM reduces to the 
solution of two separate problems. For the sum correlation functions, we 
require the solution of an OZ equation 

h,(x) = cs(x ) + (6/r (10a) 

subject to the closures 

asXk 0 < x <  1 (10b) h~(x) = - 1 + Z coshXk ~ x  ' 
k=l  

N KJe-Zt(X- 1) 
c s ( x ) = E  , x > l  (10c) 

/=1 X 
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where 
= + 4 ) ,  ,vj = ,  , 

This problem has already been treated in detail in I, and numerical 
calculations for this system have been performed. (~9) 

For the difference correlation functions, we must solve the OZ equa- 
tion 

hd(x ) = cd(x ) + (6/~r)~lhd.Ca(X) ( l l a )  

subject to the closures 

adXk O < x < l  ( l lb )  ha(x) = ~ cosh~k k )~x ' 
k = l  

N + I  Kle - z t ( x - l )  
Ca(X) = Z , X > 1 ( l lc )  

/=1  X 

where 

We solve this latter problem using the Baxter Weiner-Hopf factoriza- 
tion technique (1~ which was utilized in I. In the present case, however, we 
note that some care must be exercised in taking the limit ZN+ ~ ~ 0. (24) 

As in I, we find that the OZ equation may be decoupled into two 
equations for ha(x ) and Ca(X ) given by [cf. Eqs. (I.12)-(I.15)] 

H(x)  = q(x) + 12~ (~176 - t[) (12) 
do 

with 

S(x)  = q(x) + 12~s176176 - x) 

s ) H(x)  = t tdt 
X 

S(x)  = s  

and the function q(x) is given by 

(13) 

where 

and 

(14) 

(15) 

qo(X) = 0, x < 0, x > 1 (17) 

B t = K~/z,O(iz,) (18) 

N + I  

q(x) - -  qo(X) + ~ fl, e -z'(x-~) (16) 
1=1 
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The function Q(k) is given by 

Q_.(k) = 1 -  12~)s (19) 

From Eqs. (16) and (19), we find that ZN+ 1Q(zs+l) is nonzero in the limit 
Zs+ 1 ~ 0  and is equal to 6*/flU+l. Hence, 

6*/flU2+ 1 = K N+I = B (20) 

This corresponds to the result obtained in the MSA for the RPM. 
To find the form of qo(x) we substitute Eqs. (1 lb), (14), and (16) into 

Eq. (12), yielding on the domain 0 < x < 1 

N 

H(x) = qo(x) + ~ file -z'(x-') + /~N+I 
/=1 

+ 12*/s  tlldt 

N 
+ 1 2 . / ~  f l ,s tl)dt 

l=1 

+ 12*/BN+Is -- tl)dt (21) 

In general, we are not assured that the last integral in Eq. (21) is conver- 
gent. However, we invoke the Stillinger-Lovett electroneutrality condi- 
tion, (2~) which for an R-component  system of charges states that 

s  2 _ (22) qnO~ r ,.Ar)dr- 

For the present case this simplifies to 

s  dx = - 1/24,/ (23) 

On the domain 0 < x < l, we find that H(x) is given by [cf. Eq. (I.19)] 
M 

1 H(x) = H o + ~ 7x 2 -  ~, A#[cosh)tkx- 1], 0 < x < 1 (24) 
k = l  

where 

/-/o = fo%h(t) dt (25) 
M 

"g = 2 0 l k d ~ k 2 / c o S h X k  (26)  
k = l  

Ak = akd//cOsh•k (27) 
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Substitution of Eqs. (23) and (24) into Eq. (21) then yields the following 
form for qo(x) [cf. Eqs. (I.23)-(I.29)1: 

qo (x )  -~ - 2 / ~ ( x  3 - 1) + �89 ~ - 1) + q , ( x  - 1) 

M 
+ ~ [ Qkl(c~ x -- coshXk) + Qk2(sinhXkx -- sinhXk) ] 

k ~ l  

N 

+ ~ f l tdt [ l  - e -~ ' (~- ' ) ]  (28) 
/ = 1  

where 

[;0 1 q~ = 12~/y dttqo(t ) + ~ - -  - 12T/fiN+ H 0 + (29) 
l =  1 Z2 1 

q2 = ~ z - ~ 2 ~  - N - -  ( 3 o )  
l = 1  Z 

lqo(t)coshXktdt 127 ~] 7 - i - 5  Qkl--Ak - - I +  12~/ + (31) 
t = l zt -- )k k 

Qk2 = - 12~/Ak qo( t)sinh )tkt dt ~ + )kk 2--"~2 

zt s  + z7 = 1 xk - zt 

and if(s) is the Laplace transform of Xhd(X) = xga(x) [of. Eq. 0.29)]. These 
equations are analogous to those obtained in I, except for the appearance 
of the term H 0 + ~ = l A k  in Eq. (29). A quadratic equation for the 
parameter H 0 in the terms of the other parameters (ql, q2, Qkl, Qk2, dr) may 
be found easily by equating the constant terms in Eq. (21). 

The remaining parameters may now be determined using methods 
similar to those outlined in I, using the relationship between h(s) and the 
Laplace transform of xq(x) [cf. Eqs. (I.30)-(I.35)]. The quantities ql, q2, 
Q~I, Qk2 may be found as functions of fit, dl (l = 1 . . . . .  N), Ho, and flU+l 
(known), since Eqs. (29)-(32) are linear in these variables. Then H 0 may be 
determined using the quadratic equation mentioned above. This introduces 
nonlinearties not present in the problem of I. Thus for N Yukawa terms we 
are reduced to the problem of solving 2N nonlinear algebraic equations for 
the parameters fit, dt (l -- 1 . . . . .  N). This is to be contrasted with I, where 
only N nonlinear equations need be considered. 
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3. THE C A S E  M =  I ,  N =  0 

For the case M = 1, N = 0, the SCRM represents the simplest exten- 
sion of the MSA for the RPM that incorporates a soft core. The sum direct 
correlation function now satisfies 

Cs(X) = 0, x > 1 (34) 

This problem has already been considered in detail by Wright and Per, 
ram. (22) We note here that the solution to this problem reduces to the 
relatively simple problem of solving four linear equations for the parame- 
ters of q(x). 

The difference correlation functions satisfy the equations 

aX 2 (s inhXx 1), 0 <  x < 1  (35a) 
h a ( x ) -  coshX kx 

cd(x ) = B ,  x > 1 (35b) 
x 

The parameter/3 is given explicitly as 

/3 = ( B / 6~) '/2 (36) 

where the negative root is chosen to ensure agreement with known hard- 
core MSA results in the limit a ~ 0. It is then straightforward to verify that 
the parameters q~, q2, Q11, Q12 are the solutions of a set of linear equations 
of the form (cf. Ref. 19) 

qll 
6-~ q2 

Qll 

Q22 j 
= L o + H 0 L  1 (37)  

where the elements of the matrix 0K and the array L 0 do not explicitly 
depend on H 0 and 

- 12Tt/3 - 

El = 0 (38) 
0 
0 

The elements in the matrix ~ and vector L o are easily found and thus not 
given here. Multiplying Eq. (37) by ~ -  l, we obtain expansions for the 
quantities ql, qz, Q11, and Q12 of the form 

ql 

q2 
Qll = A~ + H~ (39) 

Q~2 k 
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Using these expansions in Eq. (21) evaluated at x = 0 yields a quadratic 
equation for the parameter H 0. This is similar in form to that obtained for 
the corresponding H 0 in the MSA for the RPM. (23) 

Hence, the solution for the parameters in the SCRM may be found 
explicitly in the case N = 0 for a given set of soft-core parameters a11, a~2, 

All, ~12" 
Methods for choosing the soft-core parameters have been discussed 

both in I and Ref. 19. At present we are performing numerical calculations 
when Xll and ~12 are kept fixed and all and ol12 are chosen so that hll(x ) 
and hl2(X ) are continuous at x = 1. 
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